深入并发包-AQS

仅供学习交流,如有错误请指出,如要转载请加上出处,谢谢

前言

在java.util.concurrent并发包中,很多类的并发同步控制都是基于AbstractQueuedSynchronizer(简称AQS)这个同步器抽象类来实现的,比如ReentrantLock,Semaphore,CountDownLatch,ReentrantReadWriteLock,SynchronizerQueue和FutureTask,它通过依赖状态来实现获取锁或者一种许可的机制,下面通过源码来分析AQS以及ReentrantLock可重入锁中AQS的运用

AQS

获取锁

先看下他的继承体系:

1
2
3
public abstract class AbstractQueuedSynchronizer
extends AbstractOwnableSynchronizer
implements java.io.Serializable {

AQS继承于AbstractOwnableSynchronizer,顾名思义:线程独有的同步器,这为创建需要所有权的锁和相关的同步器提供了基础,在AbstractOwnableSynchronizer中只提供了一个线程属性的setter和getter方法

1
2
3
4
5
6
7
8
private transient Thread exclusiveOwnerThread;
protected final void setExclusiveOwnerThread(Thread thread) {
exclusiveOwnerThread = thread;
}
protected final Thread getExclusiveOwnerThread() {
return exclusiveOwnerThread;
}

AQS继承了exclusiveOwnerThread属性,表示当前拥有独占锁的的线程,这也引入了锁的另一个特性:重入性,当前线程直接通过if (currentThread == getExclusiveOwnerThread()){state++}判断是否已经拥有了锁

现在我们再回到AQS,查看AQS的属性结构

1
2
3
4
5
6
7
// 头结点,你直接把它当做 当前持有锁的线程 可能是最好理解的
private transient volatile Node head;
// 阻塞的尾节点,每个新的节点进来,都插入到最后,也就形成了一个隐视的链表
private transient volatile Node tail;
// 这个是最重要的,不过也是最简单的,代表当前锁的状态,0代表没有被占用,大于0代表有线程持有当前锁
// 之所以说大于0,而不是等于1,是因为锁可以重入嘛,每次重入都加上1
private volatile int state;

如上所示就是AQS定义的三个属性,其实线程在AQS会被抽象成一个Node的执行单元,我们再来看一看Node的结构:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
static final class Node {
/** Marker to indicate a node is waiting in shared mode */
// 标识节点当前在共享模式下
static final Node SHARED = new Node();
/** Marker to indicate a node is waiting in exclusive mode */
// 标识节点当前在独占模式下
static final Node EXCLUSIVE = null;
// ======== 下面的几个int常量是给waitStatus用的 ===========
/** waitStatus value to indicate thread has cancelled */
// 代表此线程取消了争抢这个锁
static final int CANCELLED = 1;
/** waitStatus value to indicate successor's thread needs unparking */
// 官方的描述是,其表示当前node的后继节点对应的线程需要被唤醒
static final int SIGNAL = -1;
/** waitStatus value to indicate thread is waiting on condition */
// 表示线程处于等待的条件下的值,与下面的waitStatus对应,这在Lock中的condition中会使用
static final int CONDITION = -2;
/**
* waitStatus value to indicate the next acquireShared should
* unconditionally propagate
*/
static final int PROPAGATE = -3;
// =====================================================
// 取值为上面的1、-1、-2、-3,或者0(以后会讲到)
// 这么理解,暂时只需要知道如果这个值 大于0 代表此线程取消了等待,
// 也许就是说半天抢不到锁,不抢了,ReentrantLock是可以指定timeouot的。。。
volatile int waitStatus;
// 前驱节点的引用
volatile Node prev;
// 后继节点的引用
volatile Node next;
// 这个就是线程本尊
volatile Thread thread;
}

这就是AQS的数据结构了,其实就是一个FIFO的队列,队列中的每一个节点Node就是代表一个具有状态的线程,如下图所示

我们新进的线程会插入队列的尾端tail,而队列的执行序列从head开始,AQS的工作就是维护这个队列以及node中线程的各种状态,下面以ReentrantLock的公平锁来分析AQS在其中发挥的作用

我们以下面ReentrantLock的使用方法来进入AQS

1
2
3
4
5
6
7
8
9
10
11
public class LockTest{
private ReentrantLock reentrantLock = new ReentrantLock(true); //构建ReentrantLock
public void lockService() {
try {
reentrantLock.lock(); //获得锁
// do业务代码
} finally {
reentrantLock.unlock();// 释放锁
}
}
}

ReentrantLock的构造方法如下

1
2
3
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}

当fair参数为true时,将会创建内部类FairSync类,这是一个公平锁的实现,源码继承结构如下

1
2
3
static final class FairSync extends Sync {
......
}

FairSync继承与Sync,这是AQS的实现类,我们再来看一下Sync的源码继承结构

1
2
3
abstract static class Sync extends AbstractQueuedSynchronizer {
......
}

ReentrantLock只支持以独占锁的方式来获取锁,所以会实现AQS中的tryAcquire和tryRelease和isHeldExclusively这三个核心的方法,内部会用名叫Sync的内部抽象类来管理线程锁,当线程调用lock方法获取锁时,我们来看看FairSync的lock方法

1
2
3
final void lock() {
acquire(1);
}

他会调用继承于AQS的acquire的方法,如下所示

1
2
3
4
5
6
7
8
9
10
11
12
// 我们看到,这个方法,如果tryAcquire(arg) 返回true, 也就结束了。
// 否则,acquireQueued方法会将线程压到队列中
public final void acquire(int arg) { // 此时 arg == 1
// 首先调用tryAcquire(1)一下,名字上就知道,这个只是试一试
// 因为有可能直接就成功了呢,也就不需要进队列排队了,
// 对于公平锁的语义就是:本来就没人持有锁,根本没必要进队列等待(又是挂起,又是等待被唤醒的)
if (!tryAcquire(arg) &&
// tryAcquire(arg)没有成功,这个时候需要把当前线程挂起,放到阻塞队列中。
acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) {
selfInterrupt();
}
}

当前线程会尝试去获取锁,调用FairSync实现的tryAcquire(1)方法,如下所示

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
// 尝试直接获取锁,返回值是boolean,代表是否获取到锁
// 返回true:1.没有线程在等待锁;2.重入锁,线程本来就持有锁,也就可以理所当然可以直接获取
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
// 如果state == 0 表示此时此刻没有线程持有锁
if (c == 0) {
// 虽然此时此刻锁是可以用的,但是这是公平锁,既然是公平,就得讲究先来后到,
// 看看有没有别人在队列中等了半天了
if (!hasQueuedPredecessors() &&
// 如果没有线程在等待,那就用CAS尝试一下,成功了就获取到锁了,
// 不成功的话,只能说明一个问题,就在刚刚几乎同一时刻有个线程抢先了 =_=
// 因为刚刚还没人的,我判断过了😂😂😂
compareAndSetState(0, acquires)) {
// 到这里就是获取到锁了,标记一下,告诉大家,现在是我占用了锁
setExclusiveOwnerThread(current);
return true;
}
}
// 判断是否是重入的线程,需要操作:state=state+1
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
// 如果到这里,说明前面的if和else if都没有返回true,说明没有获取到锁
// 回到上面一个外层调用方法继续看:
// if (!tryAcquire(arg)
// && acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
// selfInterrupt();
return false;
}

如果返回false的话,会把当前线程加入阻塞队列中,现在我们继续来进入AQS中的addWaiter方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
/**
* Creates and enqueues node for current thread and given mode.
*
* @param mode Node.EXCLUSIVE for exclusive, Node.SHARED for shared
* @return the new node
*/
// 此方法的作用是把线程包装成node,同时进入到队列中
// 参数mode此时是Node.EXCLUSIVE,代表独占模式
private Node addWaiter(Node mode) {
//mode值下一个等待的线程节点,默认为null
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
// 以下几行代码想把当前node加到链表的最后面去,也就是进到阻塞队列的最后
Node pred = tail;
// tail!=null => 队列不为空(tail==head的时候,其实队列是空的,不过不管这个吧)
if (pred != null) {
// 设置自己的前驱 为当前的队尾节点
node.prev = pred;
// 用CAS把自己设置为队尾, 如果成功后,tail == node了
if (compareAndSetTail(pred, node)) {
// 进到这里说明设置成功,当前node==tail, 将自己与之前的队尾相连,
// 上面已经有 node.prev = pred
// 加上下面这句,也就实现了和之前的尾节点双向连接了
pred.next = node;
// 线程入队了,可以返回了
return node;
}
}
// 仔细看看上面的代码,如果会到这里,
// 说明 pred==null(队列是空的) 或者 CAS失败(有线程在竞争入队)
enq(node);
return node;
}

如果队列是空的,或者有竞争,就调用enq方法采用自旋的方式来加入阻塞队列,如下所示

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
/**
* Inserts node into queue, initializing if necessary. See picture above.
* @param node the node to insert
* @return node's predecessor
*/
// 采用自旋的方式入队
// 之前说过,到这个方法只有两种可能:等待队列为空,或者有线程竞争入队,
// 自旋在这边的语义是:CAS设置tail过程中,竞争一次竞争不到,我就多次竞争,总会排到的
private Node enq(final Node node) {
for (;;) {
Node t = tail;
// 之前说过,队列为空也会进来这里
if (t == null) { // Must initialize
// 初始化head节点
// 细心的读者会知道原来head和tail初始化的时候都是null,反正我不细心
// 还是一步CAS,你懂的,现在可能是很多线程同时进来呢
if (compareAndSetHead(new Node()))
// 给后面用:这个时候head节点的waitStatus==0, 看new Node()构造方法就知道了
// 这个时候有了head,但是tail还是null,设置一下,
// 把tail指向head,放心,马上就有线程要来了,到时候tail就要被抢了
// 注意:这里只是设置了tail=head,这里可没return哦,没有return,没有return
// 所以,设置完了以后,继续for循环,下次就到下面的else分支了
tail = head;
} else {
// 下面几行,和上一个方法 addWaiter 是一样的,
// 只是这个套在无限循环里,反正就是将当前线程排到队尾,有线程竞争的话排不上重复排
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
// 然后再次回到这段代码了
// if (!tryAcquire(arg)
// && acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
// selfInterrupt();

我们再来看一看acquireQueued方法,在进入阻塞队列中,他会再次尝试获取锁,如下所示

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
// 下面这个方法,参数node,经过addWaiter(Node.EXCLUSIVE),此时已经进入阻塞队列
// 注意一下:如果acquireQueued(addWaiter(Node.EXCLUSIVE), arg))返回true的话,
// 意味着上面这段代码将进入selfInterrupt(),所以正常情况下,下面应该返回false
// 这个方法非常重要,应该说真正的线程挂起,然后被唤醒后去获取锁,都在这个方法里了
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
boolean interrupted = false;
for (;;) {
final Node p = node.predecessor();//获取当前node的前一个node
// p == head 说明当前节点虽然进到了阻塞队列,但是是阻塞队列的第一个,因为它的前驱是head
// 注意,阻塞队列不包含head节点,head一般指的是占有锁的线程,head后面的才称为阻塞队列
// 所以当前节点可以去试抢一下锁
// 这里我们说一下,为什么可以去试试:
// 首先,它是队头,这个是第一个条件,其次,当前的head有可能是刚刚初始化的node,
// enq(node) 方法里面有提到,head是延时初始化的,而且new Node()的时候没有设置任何线程
// 也就是说,当前的head不属于任何一个线程,所以作为队头,可以去试一试,
// tryAcquire已经分析过了, 忘记了请往前看一下,就是简单用CAS试操作一下state
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
// 到这里,说明上面的if分支没有成功,要么当前node本来就不是队头,
// 要么就是tryAcquire(arg)没有抢赢别人,继续往下看
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}

当前线程获取锁失败会调用shouldParkAfterFailedAcquire方法,如下所示

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
// 刚刚说过,会到这里就是没有抢到锁呗,这个方法说的是:"当前线程没有抢到锁,是否需要挂起当前线程?"
// 第一个参数是前驱节点,第二个参数才是代表当前线程的节点
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
int ws = pred.waitStatus;
//下面的三个判断符合下列三种规则
// 规则1:如果前继的节点状态为SIGNAL,表明当前节点需要unpark(唤醒),则返回成功,此时 acquireQueued方法的第12行(parkAndCheckInterrupt)将导致线程阻塞
// 规则2:如果前继节点状态为CANCELLED(ws>0),说明前置节点已经被放弃,则回溯到一个非取消的前继节点,返回false,acquireQueued方法的无限循环将递归调用该方法,直至规则1返回true,导致线程阻塞
// 规则3:如果前继节点状态为非SIGNAL、非CANCELLED,则设置前继的状态为SIGNAL,返回false后进入acquireQueued的无限循环,与规则2同
// 前驱节点的 waitStatus == -1 ,说明前驱节点状态正常,当前线程需要挂起,直接可以返回true
if (ws == Node.SIGNAL)
/*
* This node has already set status asking a release
* to signal it, so it can safely park.
*/
return true;
// 前驱节点 waitStatus大于0 ,之前说过,大于0 说明前驱节点取消了排队。这里需要知道这点:
// 进入阻塞队列排队的线程会被挂起,而唤醒的操作是由前驱节点完成的。
// 所以下面这块代码说的是将当前节点的prev指向waitStatus<=0的节点,
if (ws > 0) {
/*
* Predecessor was cancelled. Skip over predecessors and
* indicate retry.
*/
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
/*
* waitStatus must be 0 or PROPAGATE. Indicate that we
* need a signal, but don't park yet. Caller will need to
* retry to make sure it cannot acquire before parking.
*/
// 仔细想想,如果进入到这个分支意味着什么
// 前驱节点的waitStatus不等于-1和1,那也就是只可能是0,-2,-3
// 在我们前面的源码中,都没有看到有设置waitStatus的,所以每个新的node入队时,waitStatu都是0
// 用CAS将前驱节点的waitStatus设置为Node.SIGNAL(也就是-1)
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
// 回到下面的代码
// if (shouldParkAfterFailedAcquire(p, node) &&
// parkAndCheckInterrupt())

如果此线程取消了竞争(也就是waitStatus>0),就会进入阻塞中断,这个时候需要一个契机将他唤醒,所有要不断循环前一个节点作为需要作为唤醒的契机(这在后面的释放锁操作会有说明),返回false,如果返回true的话,接下来会调用parkAndCheckInterrupt方法来检查中断操作,如下所示

1
2
3
4
5
6
// 这个方法很简单,因为前面返回true,所以需要挂起线程,这个方法就是负责挂起线程的
// 这里用了LockSupport.park(this)来挂起线程,然后就停在这里了,等待被唤醒=======
private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);
return Thread.interrupted();
}

释放锁

看完了获取锁,现在来看看释放锁的实现,在前面reentrantLock的使用用例中,当线程执行完会在finally块中执行reentrantLock.unlock()来释放锁,如下所示

1
2
3
public void unlock() {
sync.release(1);
}

他会调用release(1)方法,如下所示

1
2
3
4
5
6
7
8
9
public final boolean release(int arg) {
if (tryRelease(arg)) {
Node h = head;
if (h != null && h.waitStatus != 0)
unparkSuccessor(h);
return true;
}
return false;
}

上述会尝试执行释放锁的操作,调用FairSync实现的tryRelease方法,和获取锁的路子类似

1
2
3
4
5
6
7
8
9
10
11
12
13
14
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
// 是否完全释放锁
boolean free = false;
// 其实就是重入的问题,如果c==0,也就是说没有嵌套锁了,可以释放了,否则还不能释放掉
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}

如果释放锁成功,且head不为空就会调用unparkSuccessor方法来唤醒后继的线程,如下所示:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
// 唤醒后继节点
// 从上面调用处知道,参数node是head头结点
private void unparkSuccessor(Node node) {
/*
* If status is negative (i.e., possibly needing signal) try
* to clear in anticipation of signalling. It is OK if this
* fails or if status is changed by waiting thread.
*/
int ws = node.waitStatus;
// 如果head节点当前waitStatus<0, 将其修改为0
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);
/*
* Thread to unpark is held in successor, which is normally
* just the next node. But if cancelled or apparently null,
* traverse backwards from tail to find the actual
* non-cancelled successor.
*/
// 下面的代码就是唤醒后继节点,但是有可能后继节点取消了等待(waitStatus==1)
// 从队尾往前找,找到waitStatus<=0的所有节点中排在最前面的
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
// 从后往前找,仔细看代码,不必担心中间有节点取消(waitStatus==1)的情况
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
// 唤醒线程
LockSupport.unpark(s.thread);
}

唤醒的线程会在如下代码继续进行

1
2
3
4
private final boolean parkAndCheckInterrupt() {
LockSupport.park(this); // 刚刚线程被挂起在这里了
return Thread.interrupted();
}

注意:LockSupport是并发包中针对线程阻塞操作的工具类

执行完,这时会返回到acquireQueued(final Node node, int arg)方法,而方法中的无限循环for(;;)就是为了唤醒的线程重新去获取锁,直到异常退出或者执行完

总结

AQS是由CLH锁实现的,是一种基于链表的可扩展、高性能、公平的自旋锁,申请线程只在本地变量上自旋,它不断轮询前驱的状态,如果发现前驱释放了锁就结束自旋,在整个并发包中,很多地方你都会看见AQS的身影,他在并发控制的作用无法替代

参考

https://hongjiev.github.io/2017/06/16/AbstractQueuedSynchronizer/
http://blog.csdn.net/chen77716/article/details/6641477